247 research outputs found

    Managing Epistemic Uncertainties in the Underlying Models of Safety Assessment for Safety-Critical Systems

    Get PDF
    When conducting safety assessment for safety-critical systems, epistemic uncertainty is an ever-present challenge when reasoning about the safety concerns and causal relationships related to hazards. Uncertainty around this causation thus needs to be managed well. Unfortunately, existing safety assessment tends to ignore unknown uncertainties, and stakeholders rarely track known uncertainties well through the system lifecycle. In this thesis, an approach is described for managing epistemic uncertainties about the system and safety causal models that are applied in a safety assessment. First, the principles that define the requirements for the approach are introduced. Next, these principles are used to construct three distinct steps that constitute an approach to manage such uncertainties. These three steps involve identifying, documenting and tracking the uncertainties throughout the system lifecycle so as to enable intervention to address the uncertainties. The approach is evaluated by integrating it with two existing safety assessment techniques, one using models from a system viewpoint and the other with models from a component viewpoint. This approach is also evaluated through peer reviews, semi-structured interviews with practitioners, and by review against requirements derived from the principles. Based on the evaluation results, it is plausible that our approach can provide a feasible and systematic way to manage epistemic uncertainties in safety assessment for safety-critical systems

    Lunar preform manufacturing

    Get PDF
    A design for a machine to produce hollow, continuous fiber reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5k W, the proposed machine will run continuously, unmanned in fourteen day cycles, matching the length of moon days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium

    Detection and Classification of Supernova Gravitational Waves Signals: A Deep Learning Approach

    Get PDF
    We demonstrate the application of a convolutional neural network to the gravitational wave signals from core collapse supernovae. Using simulated time series of gravitational wave detectors, we show that based on the explosion mechanisms, a convolutional neural network can be used to detect and classify the gravitational wave signals buried in noise. For the waveforms used in the training of the convolutional neural network, our results suggest that a network of advanced LIGO, advanced VIRGO and KAGRA, or a network of LIGO A+, advanced VIRGO and KAGRA is likely to detect a magnetorotational core collapse supernovae within the Large and Small Magellanic Clouds, or a Galactic event if the explosion mechanism is the neutrino-driven mechanism. By testing the convolutional neural network with waveforms not used for training, we show that the true alarm probabilities are 52% and 83% at 60 kpc for waveforms R3E1AC and R4E1FC L. For waveforms s20 and SFHx at 10 kpc, the true alarm probabilities are 70% and 93% respectively. All at false alarm probability equal to 10%

    Exploring the potential for achieving the triple-bottom-line of sustainability through offsite manufacturing

    Get PDF
    Triggered by the rapid depletion of natural resources, sustainability has now becoming a popular topic that has been linked to various aspects of human’s life. Given the very scale of the global construction industry, sustainability has emerged as one of the main features in the construction industry including in choosing the construction method such as offsite manufacturing (OSM) in construction. In fact, one of the main advantages of OSM has been expected as its potential to minimise waste as well as higher level of productivity and hence supporting sustainability. However, it has also been reported that despite all its advantages, the uptake of OSM is still considered relatively low in the construction industry. In discussing about sustainability, various scholars have championed the importance of looking into this matter through a more holistic view of sustainability including economical, social and environmental. This is also known as the triple bottom-line of sustainability. This paper presents a review of the current development in analysing the achievement of the triple bottom-line of sustainability throughout the lifecycle of offsite construction projects. The outcomes of this review are expected to unveil various points within the lifecycle of projects delivered with the offsite construction techniques that can be improved to better facilitate the achievement of the triple-bottom-line of sustainability in these projects. The findings can be used by practitioners to improve and better justify the implementation of offsite construction techniques and subsequently, further promoting the use of such techniques in the construction industry

    Incorporating epistemic uncertainty into the safety assurance of socio-technical systems

    Get PDF
    In system development, epistemic uncertainty is an ever-present possibility when reasoning about the causal factors during hazard analysis. Such uncertainty is common when complicated systems interact with one another, and it is dangerous because it impairs hazard analysis and thus increases the chance of overlooking unsafe situations. Uncertainty around causation thus needs to be managed well. Unfortunately, existing hazard analysis techniques tend to ignore unknown uncertainties, and system stakeholders rarely track known uncertainties well through the system lifecycle. In this paper, we outline an approach to managing epistemic uncertainty in existing hazard analysis techniques by focusing on known and unknown uncertainty. We have created a reference populated with a wide range of safety-critical causal relationships to recognise unknown uncertainty, and we have developed a model to systematically capture and track known uncertainty around such factors. We have also defined a process for using the reference and model to assess possible causal factors that are suspected during hazard analysis. To assess the applicability of our approach, we have analysed the widely-used MoDAF architectural model and determined that there is potential for our approach to identify additional causal factors that are not apparent from individual MoDAF views. We have also reviewed an existing safety assessment example (the ARP4761 Aircraft System analysis) and determined that our approach could indeed be incorporated into that process. We have also integrated our approach into the STPA hazard analysis technique to demonstrate its feasibility to incorporate into existing techniques. It is therefore plausible that our approach can increase safety assurance provided by hazard analysis in the face of epistemic uncertainty

    Incorporating epistemic uncertainty into the safety assurance of socio-technical systems

    Get PDF
    In system development, epistemic uncertainty is an ever-present possibility when reasoning about the causal factors during hazard analysis. Such uncertainty is common when complicated systems interact with one another, and it is dangerous because it impairs hazard analysis and thus increases the chance of overlooking unsafe situations. Uncertainty around causation thus needs to be managed well. Unfortunately, existing hazard analysis techniques tend to ignore unknown uncertainties, and system stakeholders rarely track known uncertainties well through the system lifecycle. In this paper, we outline an approach to managing epistemic uncertainty in existing hazard analysis techniques by focusing on known and unknown uncertainty. We have created a reference populated with a wide range of safety-critical causal relationships to recognise unknown uncertainty, and we have developed a model to systematically capture and track known uncertainty around such factors. We have also defined a process for using the reference and model to assess possible causal factors that are suspected during hazard analysis. To assess the applicability of our approach, we have analysed the widely-used MoDAF architectural model and determined that there is potential for our approach to identify additional causal factors that are not apparent from individual MoDAF views. We have also reviewed an existing safety assessment example (the ARP4761 Aircraft System analysis) and determined that our approach could indeed be incorporated into that process. We have also integrated our approach into the STPA hazard analysis technique to demonstrate its feasibility to incorporate into existing techniques. It is therefore plausible that our approach can increase safety assurance provided by hazard analysis in the face of epistemic uncertainty

    Binary Neutron Star Mergers and Third Generation Detectors: Localization and Early Warning

    Get PDF
    For third generation gravitational wave detectors, such as the Einstein Telescope, gravitational wave signals from binary neutron stars can last up to a few days before the neutron stars merge. To estimate the measurement uncertainties of key signal parameters, we develop a Fisher matrix approach which accounts for effects on such long duration signals of the time-dependent detector response and the earths rotation. We use this approach to characterize the sky localization uncertainty for gravitational waves from binary neutron stars at 40, 200, 400, 800 and 1600Mpc, for the Einstein Telescope and Cosmic Explorer individually and operating as a network. We find that the Einstein Telescope alone can localize the majority of detectable binary neutron stars at a distance of 200\leq200Mpc to within 100deg2100\text{deg}^2 with 90% confidence. A network consisting of the Einstein Telescope and Cosmic Explorer can enhance the sky localization performance significantly - with the 90% credible region of O(1)deg2\mathcal{O}(1) \text{deg}^2 for most sources at 200\leq200Mpc and 100deg2\leq100\text{deg}^2 for most sources at 1600\leq1600Mpc. We also investigate the prospects for third generation detectors identifying the presence of a signal prior to merger. To do this, we require a signal to have a network signal-to-noise ratio of 12\geq12 and 5.5\geq5.5 for at least two interferometers, and to have a 90% credible region for the sky localization that is no larger than 100deg2100 \text{deg}^2. We find that the Einstein Telescope can send out such "early-warning" detection alerts 1 - 20 hours before merger for 100% of detectable binary neutron stars at 40Mpc and for 58%\sim58\% of sources at 200Mpc. For sources at a distance of 400Mpc, a network of the Einstein telescope and Cosmic Explorer can produce detection alerts up to 3\sim 3 hours prior to merger for 98% of detectable binary neutron stars

    Seasonal and spatial dynamics of the primary vector of plasmodium knowlesi within a major transmission focus in Sabah, Malaysia

    Get PDF
    Background The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species. Methodology/Principal Findings We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs. Conclusions/Significance This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region. Author Summary The first natural infection of Plasmodium knowlesi was reported 40 years ago. At that time it was perceived that the infection would not affect humans. However, now P. knowlesi is the predominant malaria species (38% of the cases) infecting people in Malaysia and is a notable obstacle to malaria elimination in the country. Plasmodium knowlesi has also been reported from all countries in Southeast Asia with the exception of Lao PDR and Timor Leste. In Sabah, Malaysian Borneo cases of human P. knowlesi are increasing. Thus, a comprehensive understanding of the bionomics of the vectors is required so as to enable proper control strategies. Here, we conducted a longitudinal study in Kudat district, Sabah, to determine and characterize the vectors of P. knowlesi within this transmission foci. Anopheles balabacensis was the predominant mosquito in all study sites and is confirmed as vector for P. knowlesi and other simian malaria parasites. The peak biting time was in the early part of the evening between1800 to 2000. Thus, breaking the chain of transmission is an extremely challenging task for the malaria elimination programme

    Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species?

    Get PDF
    JRS was funded by the Swiss National Science Foundation (SNF) (http://www.snf.ch/en/Pages/default.aspx) grant number PDFMP3_132479 / 1 awarded to JG. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
    corecore